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Abstract: The asymptotic behaviour of the scattering amplitude is investigated at high energies.
It is shown that at high energies the usual diffraction picture of scattering contradicts the
unitarily conditions and analytic properties of the scattering amplitude formulated will= the
help of Mandelstam's representations. In terms of these conditions it is natural to expect that
the cross section should decrease faster than 1/In R.

1 . Introduction

The asymptotic behaviour of scattering amplitudes in quantum field theory
has been investigated in refs. 1-3) . In all cases, however, only rather general
restrictions on possible asymptotics have been obtained . At present, mainly
owing to Mandelstarn 4), it has become possible in studying asymptotic
behaviours to make a more extensive use of unitary conditions and the disper-
sion relations for the momentum transfer . Since thus far we have been able
to deal only with two-body states under unitarity conditions, we can hardly
expect a complete solution of the problem. Nevertheless, some limited informa-
tion can be obtained, as will be shown below.
The description of elastic scattering at high energies is based on the so-called

diffraction picture. According to this picture, particles with an impact para-
meter p smaller than a certain R (of the order of I/,u, ,u being the meson mass)
interact strongly with the scatterer and are discharged from the elastic channel,
while particles with an essentially larger impact parameter are not scattered.
This leads to a diffractional scattering with, two main characteristics: both the
total scattering cross-section an and the differential cross-section for elastic
scattering per unit interval of the square of the momentum transfer da/dt are
energy independent (-t being the square of the momentum transfer) .
The present paper investigates the consistency of this picture with the

requirements of unitarity and analyticity for scattering amplitudes. It is
shown that energy independence of an and da/dt cannot be reconciled with the
conditions of unitarity and analyticity . In terms of these conditions it is natural
to expect that an and da/dt decrease faster than logarithmically .

Investigating inelastic processes in the pole approximation, V. Berestetsky
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and I . Pomeranchuk r,) have arrived at a similar inconsistency of diffractional
representations with the general properties of amplitudes in quantum field
theory . Assuming that the elastic scattering cross-section remains constant,
they concluded that the cross-section of inelastic processes tends to infinity.
An assumption of a decrease of the scattering cross-section makes their results
self-consistent.

2. General Properties of the Scattering Amplitude

For the sake of simplicity we shall first consider the scattering of two identical
particles without spin (mesons) and shall assume that these particles are the
lightest in the theory and are pseudoscalar .
The elastic scattering amplitude of these particles will be treated as a func-

tion of the two invariant variables: the squate of the centre-of-mass energy S
and the square of the momentum transfer ---t . The quantity A .- A (S, t) is
normalised in such a way that

we shall assume that A (S, t) possesses the analytic properties formulated by
Mandelstam 4) and shall use the Mandelstam plane (fig . 1) .
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1,ig . 1 . The Mandelstam plane .
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whera 0 < a, < 2;

	

J1/S--4y2 is the particle momentum in the centre-of-
mass system .

If we use the dispersion relation for AI (S, t) as a function of "t"

where

with
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The functionsA (S, t) and A I (S, t) will interest us in the region I at S --* ao,
-1<S. In the t<4#2 region A (S, t) and A1(S, t) can be represented as a
series of Legendre polynomials . In particular, A I (S, t) can be written down in
the form
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From this formula one can easily derives) the asymptotic behaviour of a, (S) at
l -> oo. Since at 1 » 1 and t'/2P2< 1 we have

where p = l/P is the impact parameter and Aro(x) is the McDonald function,
the quantity
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decreases exponentially at p » 1/2y and any S, provided only that Im A I(S, t')

does not essentially change at t-4,u2 < 4y2.
At this point theanalytic properties ofA1 (S, t') are consistent with the diffrac-

tion picture. Exponential decrease of at(S) at 1 » P/2,u means that the function
AI (S, t) changes essentially only with a change of t by a value greaterthan or of

the order of ,u2. This is a simple consequence of theuncertainty relation between

t and scattering angle 0.
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In the ffi-st case

A 1(S, t) = Sf(t),

	

an = 16af(0) = const .
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A,(S)~S -* 0,

	

an -> 0.
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(11)

heref(S, t), although it oscillates with S, as a function of t changes essentially
only -ith changes in i of the order of ßu2.

6nly the first case is completely consistent with the usual diffraction picture .
Note that, if in this case we assume (6a) to hold at any S, then, by virtue of

(5), Ian A, (S, t) = Sf(t), at least for t-41cß «P2 (The author's attention to the
fact that A, = Sf(t) corresponds to the diffraction picture and that this
expression must be fitted mzth the dispersion relation on i was drawn by
1. Pomeranchuk. )

far we have concerned ourselves only with analytic properties of A 1 (S, t)
as a function of t and employed the unitarity condition in the physical region
on a limited scale (the 0 < a j < 2 condition). However, as Mandelstam 4)
first showed, unitarity conditions hi other physical regions also impose essential
restrictions on amplitudes by virtue of the analytic property of A (S, t) as a
function of S.

Let us consider the unitarity condition in region (III) (fig. 1) . At 4#$ < t <
< 161..0, inelastic processes in channel t being forbidden, the unitarity condition



has a simple form :
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where A3(S, t) = Im A (S, t) in region (III) ; z = 1+2S/(t-4,U2) is the cosine of
scattering angle in the centre-of-mass system of channel (III)

z1.2 = 1+2S1,2/(t-4,u2) .
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This form of the unitarity condition differs from the usual one only by
replacement of the variable 991 by z2 . Integration is performed over the region
in which the radical is positive . It was shown by Mandelstam that this relation
can be continued from region III (z < 1) to regions I, III (z > 1) . In contin-
uing (12) sufficiently far to regions I, III, expressions to the right and to the
left become complex. Calculating their imaginary part and taking into account
that Im A1(S, t) = Im A3 (S, t) -= p (S, t) we shall obtain, according to Mandel-
stam,

Im A1(S, t) == 1
ft

-4,u2
f
-

	

dz, dz2

	

A1(Sl, t)A1*(S2, t)
t _%/z2-2zz,z2+z12+z22-1

at 4,u2 < t C 16,42 . Integration is performed over the domain

(i3)

zlz2+ '~/ (z12-1 )(z22-1 ) <z.

	

(14)

Note that this equation is valid irrespective of the asymptotic behavioar of
A 1 (S, t) at S -->. oo .

3. Investigation of Behaviour of A,(S, t) for large S using the
Unitarity Condition

Since A1 = SAO is the most natural expression for A1(-ç, t) obtained on the
basis of diffraction picture, it is necessary first of all to substitute it into the
unitarity condition and to check wheter it can be fulfilled .

This operation is simple enough since for such an asymptotic behaviour of
A1 and for z» 1, an essential contribution to the integrand is made by zl » 1,
z2 » 1. Therefore it is possible to substitute A1(Sl, t) = S,f(L) and
A1* (S2 , t) = S2f* (t) into the right-hand side of eq. (13) . Then integrating we
obtain

Im A1 (S, t) =
1
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Since the left-hand side must equal ç Imf(t) under the assumption, then in
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f Thepossibility of investigating eq. (13) with the help of the Mellin transformation waspointedo+-t to the author by L.D. Landau .

,% , 1 . Denoting

V(p) --- f z-(P-i)AI(S, t)dz, (18)
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The integral (21) can converge either due to the decrease of B, (S) or due to
oscillations . It can be easily proved by direct substitution that a purely oscilla-
tory solution does not satisfy eq. (13) . Therefore we shall interpret the condition
(21) as the condition that Bt (S) decrease faster than 1/In S. Since!, apart from
this, Bt(S) by definition is not power dependent at S -* oo, it is more convenient
to regard Bj(S) as a function of 1~' = In S and instead of (16) to write down

11

A1(S, t) = SQ Bt($),

	

j Bt($)ds < co .

	

(16a)

Thus we find that in order to make eq. (13) valid it is necessary for qi (S, t)
to have the form of (16a) at 4,U2 < t <16y2.

In this section we have so far been concerned with the behaviourof A 1 ( S, t)
as a function of S. Now let us see what canbe deduced from (16a) on thebehav-
iour of A1(S, t) as a function of t. If the order of the powerin (16a) is afunction
of t, then A1 ( S, t) will change essentially with the change in t not by the order
,u$ but by the order ,u2/ln S, i.e., arbitrarily fast for sufficiently great S. Such a
behaviour of A1(S, t) can hardly be considered possible, because firstly, for this
behaviour of A1(S, t) the amplitudes a,(S) calculated by (5) would not, general-
ly speaking, decrease exponentially for l»jb/21z, and secondly, it seems extreme-
ly unlikely that a function, which in the region t < 4#2 changes essentially
only with a change of t of the order of ,u2 would begin to change arbitrarily fast
when analytically continued beyond the branch point into the region t > 4,u-'.
In any case it seems reasonable to postopone the treatment of such rapidly
changing functions until a more detailed investigation is carried out and to
assume that q is independent of t and is equal to unity. Assuming that Bt(~)

also changes essentially only with a change of t of the order ,u 2 we shall come to
the conclusion that the third case (ti), (11) is impossible too and that

A,(S, t) /S -* o

	

at

	

S --> oo .

So far we have shown only that the decrease of Bt(~) is a necessary condition
of A 1 (S, t) satisfying eq. (13) . It is easy to show that there exists a solution of
such a structure. We shall assume that Bt($) is a power-type function of $, i.e .
it possesses the property that Bt ($1 -f-$2) = B t (;1) if $1 >> e2, ai1d we shall put
for simplicity q = 1 (the same result is easily arrived at in case of arbitrary q) .

Contrary to (15), in the case of the asymptotic behaviour of (16a) regions
z1 >> 1, z2 z1 1, z2 >> 'prove to be essential for the integrand in the
right-hand side of (13) at z » 1 . Therefore an asymptotic expression for
A1(S, t) cannot be directly substituted into it .
We shall write down (13) in the following way
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The main contribution to the integral over u is made by u ow z. Therefore,
the integral over z can broken into two parts from zu to R and from A to

and is can be chosen in such a way that

ZO < I. < UIz4.
In the integral from z. to 2., ulzl > 1 and therefore we may substitute for
A j* uj'i the asymptotic expression
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since f44 ! (z Fdzt :Z12 converges according to the assumption, the train contribu-
tion to the integral from zo to A is made by zi ,-., 1 and therefore one can neglect
z12 -- I as compared with the remaining terms and integrate not up to I but up
to the zero of the radical .

In the same way we may treat the integral from A to ulzo. It will yield the
complex conjugate expression. Transforming to the original variables, (22) can
be written in the form
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After this transformation the first integral is easily integrated over z2 and the
second-over z (certainly asymptotically at S --* oo) .
As a result we obtain
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The integral (26) converges provided eq. (16a) is fulfilled . Eq. (25) shows that
(13) is really satisfied if A 1(S, t) has the form of (16a). Simultaneously an equa-
tion for Bg(E) emerges as a function of t. This equation holds only at 4#$ C t

16#2 but if we. assume it to be valid for any t we obtain immediately

B,(e) -- B- (e) exp

	

(t--4p2)

	

' ö(t')

	

dt
4w9 t'---t t'-4p2 '

where exp [2i& (t)] = (1---2ig~ (t) (1- -2iq~* (t) )-1 , and it is assumed that 6(t)
does not decrease at t --> oo . Thus, in the physical region A ,(S, t) -__ SB (~)f(t)
we have

ca. = B (e) ?6nf(0) C

	

at

	

S -> oo,

	

(28)

while daja. dt is-independent of S.
If from the outset we had proceeded from the assumption that

A ,(S, t) _-__ O(S)f(t), then without making any further assumptions we would
have arrived at the fact that 0(S) = SB ($) and that f(t) satisfies the equation

IMAO =ft)1T*(t} +f*(t)T(t}-

(27)

It is noteworthy that the value 97(t) (26) is in a certain way related to the
scattering phase shifts at centre-of-mass system energy -%ft. Indeed, the scatter-
ing amplitude in region (III) can be written as

A (z, t )

	

dz -- --1

	

Im A (z', t) (1z�
z _z

	

-~

	

z"-z

(29)

(30)

where z is the cosine of the scattering angle in the centre-of-mass system. If we
now wanted to evaluate the p-wave amplitude by multiplying A (z, t) by z and
integrating over z we would obtain zero by virtue of the symmetry of A (,z t) .
However, if we take only the first term in (30), multiply it by z and carry out
the integration, we obtain T(t) with an accuracy up to the factor.

4. On the Energy Value at which the Cross-Section Decrease may
prove to be essential

It is very difficult to make a definite estimate of energies at which the
cross-section decrease may prove to be essential since we can use the unitary
condition only in the intr.cva14,u2 C t < I6,u 2 , which contains no contribution
from the inelastic process es in the third channel .

However, one may att,,.11mpt to make a rough estimate of the critical energy.
It is rather interesting that such an estimate involves a numerical parameter
which renders this enemy very great .

In order to make this estimate we shall assume that starting with S = .!l the
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cross-section becomes constant and A1 = Sf(t). Substituting A1 = SP) into
the unitarïty condition (13) we arrive at eq. (15) . To estimate up to what energy
A. 1 ~w Sf(t), it is necessary to determine up to what energy the first term in (15)
containing In S. remains small as compared with the entire Im A1L . We shall see
then that the cross-section may remain constant up to energies at which

2
t-4y2)

	

121n S° < IMj(t)

	

(31)

If we now put Imf . f, neglect the fact that f(t) increases with t in the
interval from 0 to 4Et2 and substitute an/ 16a for f(t), then instead of (31) we
obtain

1

	

t--4,u2 (t-4lA2 )an

	

So-V96

	

t

	

n2

	

ln
A «

1. (32)

Eq. (32) makes sense up to t = 16,u2, and therefore if an ti 1/,u2, eq. (32) means
roughly that

in (So/A) « 100. (33)

In spite of the fact that the value So proves to be very large and that the cross-
section possibly tends to zero only at unattainably high energies, the first term
in (15) unay result in a 10 °,ô change of the cross-section already with a change of
energy from 109 eV to 1013 eV.

5. Pion-Pion Scattering at High Energies

So far we have considered scattering of neutral particles without spins. In this
section we shall show that the same reasoning can easily be applied to the case
of pion-pion scattering.

In a following paper it will be shown that the same holds for pion-nucleon
and nucleon-nucleon scattering. The scattering amplitude describing scattering
of a-mesons «rith momentum Y1 in isobaric state a by :1-mesons with momentum
hand isobaric state ß into ;r-mesons with momenta -P., --P4 and isobaric
states y, 6 can be written in the form

T-Ba78 - àz,&a'Y84 (S12 il 513p 523)+aayÔi68A (S13 y 512j 523)

+b.Ba,#rA `523 , S12 , 513)'

	

(34)
In virtue of the crossing symmetry we have

A (x; y, z) _-__ A (x ; z, y) .

	

(35)
We shall consider at first the behaviour of T,,.8 ,.s as 512 -->' cc) and S13 ~ -112
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and shall proceed from the assumption that

A (S12; S13-1 S2.)
A (S13; S23 0 S12)

	

S12F2(S13)-'

A (S23; S12 P S13) -~ S12 F, (S13),

and in a similar way we shall obtain for A (S11 ; S12, S23d'

F2 (S13) - -F2* (S13) ,

T.,6, ,y8 = 6ay6ß8S12F2(S13))

(36)

It is well known that the Feynman amplitude A (S12; S13, S23) is not an analytic
function of S12 in the upper half plane. (The functions corresponding to the
retarded commutators are analytic in the upper half plane. )Therefore if we
pass through the upper half plane from S12 to -S12 we shall obtain not
A(-S12; S13 .9 41u2+S12-S13) but A*("-S12; S13~ 402+S12- S13) . However
A* (_S12; S13 P 4tt2 -+'S12- S13) ---)- S12 Fl* (S13) as S12 oo " Hence, in view
of the fact that S12F3(S13) as S12 _~ -S12 transforms into -S12F3(SI3) we
obtain

Fl* (S13) =- F3 (S13)P

(38)

If both functions Fl(S13) and F2(S13) were non-zero it would follow from (34)
firstly that the backward scattering is of the same order as the forward for any
a, ß and secondly that the cross-section of the forward charge exchange is of
the same order as elastic scattering . The second is evident ; to make the first
evident it is sufficient to consider Taß, .y8 as S12 --> oo and S23 _ -"2 and to put
a = y, ß = 6 . As S12 -> oo and S23

	

; -,u2 we shall have from (34}

TO, aß = S121F1(S23)+6aß F3(S23) "1- 6aß F2 (S23)}'

	

(39)

It follows from (39) that in order to prevent particles of different charges
from backward scattering with the same amplitude as for forward scattering
it is necessary that Fl(S23) = 0. Then it will follow from (37) that F3 (S13 ) = 0.
In this case we obtain as S12 -} oo, S13 --~- -,u0"

(40)

i.e . only scattering without charge-exchange occurs in the forward direction.
Thus if we assume that backward scattering of particles with different charges
is comparatively small we come to the conclusion that pion-pion scattering is
characterized at high energies by a single scaler function A (S13; S23, S12)
symmetrical with respect to S12 and S23 in exactly the same way as for neutral
particles without spins.
The unitarity condition for the channelin irvMch S13 is the energy (area III in

fig. 1) is written in a way analogous to (12) for each of the three amplitudes
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corresponding to definite isobaric spins o, 1 and 2.

To = S

	

(Sx3; So, Sxs)+A (SI3; Sle, SO)+A (Sa3 ; S18; Sis),
TI =

	

A(Sls" Sxs Sas) --A (Ss3} Sl$, Sis),
T3 =

	

A(S.12 ; SI3, Su) 4-A(Su; Sls , Sis) .
Each of these relations can be continued into region jzj > 1. However, for
z >",,- 1, since A(Sts ; Sn, Sr3) and A" (SO; S2g, S,3) make a small contribution to
scattering at high energy, it is sufficient to consider only the relation for To
which is identical with (13) and will lead to the same results as for neutral
l ticles.

A,nother interesting consequence of these results is noteworthy. Under the
%une asstunption as in section 3 we find that

with S -= Sis and t = S,,3, .
If these urt-re no B($) it would fo)low from (38) that

(41)

A,I(Sis-, SI,,, SU) = SB(~,t )f(t),

	

(42)

A = iSf(t),

	

(43)
i,e,, the s-attering amplitude is imaginary (the real part could be of the order
of 1;°s zis comp ued with the imagginar~r) .

In the lport

	

mv of B($) the situation changes, drastically. With the substitu
tion of S for -S, B($) -,`iB be replaced by B(,-' -,

	

It is easy to show that in
this cw e the correct e-Kpression for the whole amplitude instead, of (43) -A"ill
have the. form
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The treatment does not claim to be mathematically rigorous, but in our
opinion it is convincing enough from the physical standpoint to encourage
further investigation.

In conclusion the author wishes to express his profound gratitude to L. D.
Landau and I. J. Pomeranchuk for their exceptional interest to the work,
numerous discussions and valuable remarks without which the work could
hardly have been be carried out . The author is also thankful to K. A. Ter-
Martirosian, V. B. Berestetsky, I . M. Shmushkevich and I . T. Diatlov for
helpful discussions .
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